| 1. | A problem in combinatorial geometry about convex polygon 边形的一个组合几何问题 |
| 2. | Closed convex polygon 闭凸多面体 |
| 3. | At the same time it realizes a convexity - preserving morph of the two convex polygons 同时本文方法实现了两个凸多边形的保凸变形。 |
| 4. | Convex polygon amalgamation algorithm used in real - time obstacle avoidance in virtual environment 用于虚拟环境中实时避障的凸多边形融合算法 |
| 5. | However , the difficulty to derive the no - fit polygon of two non - convex polygons limited its application 但是由于直接求解两个凹多边形的临界多边形比较困难,长期以来限制了它的应用。 |
| 6. | Using geometric method , a rational interpolation within convex polygons is constructed and extended to include side nodes 摘要构造出凸多边形上的一个新型有理插值,并将其推广到含有边节点的情况。 |
| 7. | ( 2 ) because the optimization method is adopted , this algorithm can realize shape matching of convex polygons with small difference ( 2 )此算法的优点还在于:对于那些局部有较小差异的多边形,可以准确地实现匹配定位。 |
| 8. | Object shapes are represented by primitive shapes ( box , cone , cylinder , sphere ) , and complexes of polytopes ( line segments , convex polygons , convex polyhedra ) 对象形状用基本形状(方框,圆锥形,圆柱,球)和复杂的多面体(线段,凸多边形,凸多面体)来表达。 |
| 9. | In this thesis , i simplified this problem into the problem to calculate the nfp of two convex polygons by decomposing the non - convex polygon into convex polygon 本文提出了多边形凸化分割的方法,将求解两个凹多边形的nfp问题转化为求解两个凸多边形的nfp问题,并加以理论证明,成功地解决了这一问题。 |
| 10. | The present paper is concerned with the solution for elastic field arising from an arbitrary convex polygon - shaped inclusion with uniformly distributed eigenstrains in an infinite elastic body having the imperfect interface 本文研究弹簧型非完美界面条件下,无限大弹体内具有均匀本征应变的任意多边形夹杂所引起的弹性场问题。 |